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A B S T R A C T   

Psychosocial stress exposure can disturb communication signals between the immune, nervous, and endocrine 
systems that are intended to maintain homeostasis. This dysregulation can provoke a negative feedback loop 
between each system that has high pathological risk. Here, we explore patterns of immune-neuroendocrine 
activity and the role of stress. Using data from the English Longitudinal Study of Ageing (ELSA), we first iden-
tified the latent structure of immune-neuroendocrine activity (indexed by high sensitivity C-reactive protein 
[CRP], fibrinogen [Fb], hair cortisol [cortisol], and insulin growth-factor-1 [IGF-1]), within a population-based 
cohort using latent profile analysis (LPA). Then, we determined whether life stress was associated with mem-
bership of different immune-neuroendocrine profiles. We followed 4,934 male and female participants, with a 
median age of 65 years, over a four-year period (2008–2012). A three-class LPA solution offered the most 
parsimonious fit to the underlying immune-neuroendocrine structure in the data, with 36 %, 40 %, and 24 % of 
the population belonging to profiles 1 (low-risk), 2 (moderate-risk), and 3 (high-risk), respectively. After adjust-
ment for genetic predisposition, sociodemographics, lifestyle, and health, higher exposure to stress was associ-
ated with a 61 % greater risk of belonging to the high-risk profile (RRR: 1.61; 95 %CI = 1.23–2.12, p = 0.001), but 
not the moderate-risk profile (RRR = 1.10, 95 %CI = 0.89–1.35, p = 0.401), as compared with the low-risk profile 
four years later. Our findings extend existing knowledge on psychoneuroimmunological processes, by revealing 
how inflammation and neuroendocrine activity cluster in a representative sample of older adults, and how stress 
exposure was associated with immune-neuroendocrine responses over time.   

1. Introduction 

Communication between proinflammatory cytokines of the innate 
immune system with glucocorticoids and their analogs of the neuroen-
docrine system, is an active continuous process necessary to maintain 
homeostasis, even in healthy individuals (Shimba et al., 2021; O’Con-
nor, 2008). Proinflammatory cytokines initiate a local inflammatory 
response that systemically passes through the bloodstream to endocrine 
and neural foci, where a number of neuroendocrine counterregulatory 
mechanisms are actuated, provoking a negative feedback loop (Taub, 
2008). The received stimulatory signals are then transduced, leading to 

a complex hormonal and cytokine cascade (Chikanza and Grossman, 
2000). This integrative network between the immune, nervous, and 
endocrine systems is known to control physiologic processes, such as cell 
growth and differentiation, metabolism, and human behaviour. Dysre-
gulation of this network has negative implications in disease aetiology 
(Dantzer, 2017; Kany et al., 2019), with the development of a number of 
physical and mental ill-states, from cardiovascular disease (Iob and 
Steptoe, 2019) to depression (Iob et al., 2019), and even accelerated 
ageing (Wagner et al., 2016). The high rates of chronic conditions 
associated with inflammatory and neuroendocrine dysregulation, along 
with the advancing age of the population, has provided the impetus to 
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identify modifiable factors that could be leveraged to mitigate disease 
genesis; stress is one such factor (Acabchuk et al., 2017). 

An expansive literature has elucidated the role of chronic psycho-
social stress (referred to as stress hereafter) as a determinant of 
morbidity and mortality (Acabchuk et al., 2017; Steptoe and Kivimäki, 
2012; Batty, 2020; Hamer et al., 2019; Cohen et al., 2007). Equally, 
stress has been implicated as a modulator of immune and neuroendo-
crine activity via psychoneuroimmunological (PNI) pathways (Kiecolt- 
Glaser et al., 2002; Johnson et al., 2019); that is, the integrative network 
between the nervous, endocrine, and immune systems. Therefore, if 
causally related to morbidity and mortality, conceivably via immune- 
neuroendocrine mechanisms, stress may present as a plausible preven-
tative target to improve population health across a number of physical 
and mental health domains. However, the dominant position that stress 
disrupts immune and neuroendocrine integrity is an oversimplification 
of this biological pathway that fails to account for the reciprocal regu-
lation of these transducing systems (Chikanza and Grossman, 2000; 
Dantzer, 2017) and their variation among the population (Steptoe et al., 
2007). Immune and neuroendocrine interactions may be intensified in 
the presence of stress (Kiecolt-Glaser et al., 2002; Hamilton et al., 2021), 
but individuals can have highly heterogeneous patterns of immune and 
neuroendocrine activity, which may conflate effects and give a partial 
explanation for the diverse and comorbid clinical outcomes associated 
with stress in the literature (Acabchuk et al., 2017; Steptoe and 
Kivimäki, 2012; Batty, 2020; Hamer et al., 2019; Cohen et al., 2007). 

The lack of observational evidence on immune and neuroendocrine 
activity, as measured by their dysregulated responses, may be due to the 
complexity of the multidirectional exchange between these systems in 
response to stress (Ménard et al., 2017). Hormonal and neuropeptide 
mediators that provide the link between the immune and neuroendo-
crine systems constitute specific axes of interactions (Taub, 2008; Chi-
kanza and Grossman, 2000; Ménard et al., 2017). It is, thus, important to 
determine from a population perspective how biomarkers representing 
these integral systems cluster together. 

The purpose of the exchange between the immune and neuroendo-
crine systems is to return to the physiological status quo ante, but many 
studies examine the nature of this regulation at the systemic level 
without considering how stress interferes with this physiological ex-
change (Andreassen et al., 2012). These biological responses appear to 
depend on stress duration and intensity, but our interest here is chronic 
stress (Johnson et al., 2019; Segerstrom and Miller, 2004). Under-
standing is further obfuscated by research that treats the mediators of 
each system as homogeneous constructs, when variation among the 
population is highly likely (Chikanza and Grossman, 2000). Further, 
elevated inflammation and HPA-axis hyperactivity have similarities in 
context of stress and disease (Segerstrom and Miller, 2004), which is 
paradoxical given the contrasting utility of cytokines and glucocorti-
coids, and the pleiotropic and redundant action between each (Shimba 
et al., 2021). 

Owing to interindividual and intraindividual variability in bio-
markers (de Maat, 1996), genetic variation is another key consideration. 
As a major determinant of circulating immune and neuroendocrine 
function, genetic variation plays an important role in susceptibility to 
disease (Frank et al., 2020), and these biomarkers are of high polygenic 
heritability (Prins, 2017). It is, therefore, important that genetic markers 
are accounted for in analyses that explore immune and neuroendocrine 
traits. 

Moreover, despite concerns of inflammaging and somatopause (i.e., 
age-related increases in plasma concentrations of inflammatory peptide 
biomarkers and the reduced expression of growth hormone secretion 
across age; Wagner et al., 2016) there remains a paucity of literature on 
stress and immune-neuroendocrine activity in older cohorts. This de-
mographic group is increasingly relevant from a public health perspec-
tive because of the advancing age of the population. Furthermore, 
financial strain (Hamilton and Steptoe, 2022), caregiving (Kiecolt- 
Glaser, 2003), illness, disability (Rhode et al., 2012), divorce (Kiecolt- 

Glaser, 2018), and bereavement (Schultze-Florey, 2012), are common 
stressors among older adults. While the accumulated burden of life 
stress, coupled with limited protective resources, has been associated 
with worse biological, psychological, and quality of life outcomes 
(Steptoe and Marmot, 2003). 

Latent profile analysis is an estimation and inference methodological 
development that presents an opportunity to take a precision medicine 
approach (Kosorok and Laber, 2019) by applying more specificity to 
population risk to improve treatment personalisation and clinical 
decision-making. It will address the ‘one-size-fits-all’ legacy that has 
infiltrated the literature and contributed to the underwhelming trans-
lation of observational findings in sub-populations to clinical trials with 
small, heterogenous patient samples (Miller and Raison, 2023). 

Classifying complex and subtle patterns of immune and neuroendo-
crine activity in a population-based cohort of older adults through latent 
profile analysis could be beneficial for three reasons. First, it may help to 
elucidate uncertainty about immune and neuroendocrine patterning. 
Second, it could contribute to more targeted preventative treatments 
and novel therapeutic strategies, such as the identification of biomarkers 
that characterise patients into subgroups most likely to benefit from 
cytokine-mediated pharmacological treatments, or the design of more 
personalised clinical trials through targeted recruitment. Third, it could 
be a resource for the formulation of more robust hypotheses for future 
research exploring stress models in immune and neuroendocrine activ-
ity, and their subsequent roles in human health and behaviour. 

We sought to address these issues in a UK cohort of community- 
dwelling older adults, to classify and quantify distinct immune and 
neuroendocrine profiles, and to determine the longitudinal association 
between psychosocial stress and the revealed profiles. To represent these 
interrelated, molecular pathways, we selected two positive acute-phase 
reactants (i.e., C-reactive protein [CRP] and fibrinogen) and two hor-
mones; one catabolic (i.e., hair cortisol), the other anabolic (i.e., insulin- 
like growth factor-1 [IGF-1]). Each biomarker has been selected for its 
relevance to immune and neuroendocrine processes in older adults. 
Positive acute-phase proteins increase as part of the innate immune 
response to inflammation. CRP, a rapid acting acute-phase protein, ac-
tivates complement and acts as an opsonin, while fibrinogen is a key but 
slow reacting coagulation acute-phase protein that influences the 
erythrocyte sedimentation rate (a non-specific clinical marker of disease 
activity; Gruys et al., 2005). By contrast, hormones are signalling mol-
ecules in the neuroendocrine system that represent the classic response 
to stress. Cortisol, produced by the adrenal glands in response to stress, 
helps to regulate various physiological processes, including metabolism 
and immune function. While IGF-1, implicated in ageing and longevity 
(Wagner et al., 2016), promotes cell growth, tissue repair, and devel-
opment (Taub, 2008), so is particularly relevant to our study population 
(Junnila et al., 2013). We expected heterogeneous patterns of immune 
and neuroendocrine activity, with two to three subgroups emerging 
from the data. We also expected psychosocial stress to be longitudinally 
associated with more adverse immune and neuroendocrine patterns four 
years later. 

2. Method 

2.1. Study design 

This prospective cohort study used fully anonymised data from the 
English Longitudinal Study of Ageing (ELSA; Steptoe et al., 2013), a 
nationally representative, multidisciplinary prospective observational 
study of the English population aged 50 years and older. To ensure the 
full age spectrum is maintained, the sample is periodically refreshed 
with younger participants. The present study used data from ELSA 
participants at wave 4 (2008), who were followed up four years later at 
wave 6 (2012). Data collection is performed in participants’ homes, via 
computer-assisted personal interviews (CAPI) and self-completed ques-
tionnaires biennially, then nurse visits every 4 years for biological 
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samples. All participants provide written consent and ethical approval 
was granted by the National Research Ethics Service (London Multi-
centre Research Ethics Committee). Full data collection procedures have 
been reported, in full, by Steptoe and colleagues (2013). A total of 6,572 
participants had complete measures and at least one biomarker at 
baseline. After exclusions of CRP values > 20 mg/L (n = 116), the 
sample was 6,456. Of these, 1,522 had missing genetic data, leaving an 
analytic sample of 4,934 (Figure S4). 

2.2. Exposures 

On the basis of risk identified in the prior (Hamilton and Steptoe, 
2022; Kiecolt-Glaser, 2018; Rhode et al., 2012; Schultze-Florey, 2012; 
Kiecolt-Glaser, 2003), six psychosocial stressors were assessed. We 
considered only those that occurred at wave 4 (2008). These were 
measured as a composite score on a scale from no stressful life events to 
the experience of six stressors. Thus, we estimated an ordinal score as the 
summation of the presence of six binary stressors. Due to its skewed 
distribution, we dichotomised this score at the median (low [0–2] vs. 
high [3-6]) , rather than at the mean (1.51 ± 0.90). Despite this median 
split, there is an unequal distribution of participants in each group due to 
the limited number of integer values of this score (0–6):  

1. Financial Strain. Binary:- the perceived chance of not having 
enough financial resources in the future to meet needs; categorised 
by 0; 1–39; 40–60; 61–99; 100 % and dichotomised at > 60 %. The 
higher the percentage, the higher the belief of having insufficient 
resources and, thus, the higher the stress experience.  

2. Care Giving. Binary:- either being an informal caregiver in the past 
week to an adult who is sick/frail , or being a caregiver during the 
last month in receipt of Carer’s Allowance.  

3. Disability. Binary:- encounters more than one difficulty with 
mobility (i.e., walking 100 yards; sitting 2-hours; rising from chairs 
after sitting long periods; climbing stairs; stooping, kneeling, or 
crouching; reaching or extending arms above shoulders; pulling or 
pushing large objects; lifting or carrying objects over 10 lb; picking- 
up a 5p coin).  

4. Illness. Binary:- has a longstanding illness or health condition that 
limits activity.  

5. Bereavement. Binary:- experienced the death of a parent, spouse, or 
partner within the past two years.  

6. Divorce. Binary:- experienced divorce or the breakdown of a long- 
term relationship within the past two years. 

2.3. Outcomes 

Immune and neuroendocrine biomarkers measured at wave 6 (2012) 
included high-sensitivity plasma C-reactive protein (CRP; mg/L), plasma 
fibrinogen (Fb; g/L), serum insulin-like growth factor-1 (IGF-1; mmol/L) 
and hair cortisol (cortisol; pg/mg). The complete immunoassay pro-
cedure can be found in Supplementary Materials (SM) 1. Blood samples 
deemed insufficient or unsuitable (e.g., haemolysed; received > 5 days 
post-collection) were discarded. Exclusion criteria for bloods included 
coagulation, haematological disorders, being on anticoagulant medica-
tion or having a history of convulsions (SM 1). A latent profile analysis 
(LPA) was then conducted on these immune and neuroendocrine bio-
markers, as later described. 

2.4. Covariates (Wave 4) 

Factors likely to confound analyses were selected a priori (see 
Figure S1 for the Directed Acyclic Graph), including demographic vari-
ables: age (≥50 years); sex (male; female); socioeconomic variables: ed-
ucation (categorised into higher education; primary/secondary/tertiary 
education; or alternative/none); occupational social class (a three- 
category version of the National Statistics Socio-Economic 

Classification (ONS, 2010): managerial and professional; intermediate; 
routine and manual); lifestyle variables: smoking status (binary:- non- 
smokers/ex-smokers or smokers); alcohol consumption (binary:- low 
< 3 or high ≥ 3 day weekly); physical activity (binary:- sedentary or 
moderate/vigorous weekly activity); genetic variables: polygenic scores 
(PGS) for CRP, cortisol, and IGF-1 (methods later described) and 10 
principal components to account for population stratification; bio-
markers: baseline (wave 4) CRP, fibrinogen, and IGF-1 entered into the 
LPA; (Figures S2-3); binary health indicators: any self-reported physician 
diagnosis of chronic lung disease, coronary heart disease, abnormal 
heart rhythm, heart murmur, congestive heart failure, angina, hyper-
tension, diabetes, cancer, Parkinson’s, Alzheimer’s, dementia, asthma, 
arthritis, osteoporosis, and psychiatric disorder. 

2.5. Genetic data 

Using PLINK and PRSice software, PGS for CRP, cortisol, and IGF-1 
were calculated using summary statistics from genome-wide associa-
tion studies (GWAS; see SM2; Ajnakina and Steptoe, 2020). A single p- 
value threshold of 0.001 was used for all PGSs to limit multiple testing, 
while maximising their potential predictive ability. PGSs were used to 
account for the proportion of the variability in the biological traits 
attributable to genetic factors. 

Imputation. Missingness ranged from 0.00 to 52.26 %, with cortisol 
having the greatest proportion of missingness, and other variables 
having less than 37 % missing (Table S1). Importantly, unbiased results 
can be obtained from large proportions of missingness (up to 90 %; 
Madley-Dowd et al., 2019), provided that the missing data pattern is at 
least Missing at Random (MAR), which we assumed here (Little and 
Rubin, 2019). Given the possibility of bias in the complete case analyses 
(Sterne, 2009), missing values on exposures, covariates, and outcomes 
were imputed using missForest (Stekhoven and Bühlmann, 2012). This 
is an algorithm based on Random Forests, a machine learning iterative 
imputation method in R v.4.2.0: RStudio v.2022.02.2. We did not 
impute missing genetic data; participants without genetic information 
were excluded from the analyses, as detailed in the analytic sample 
formation (Figure S4). The imputation of the missing values yielded 
minimal error for continuous variables (Normalized Root Mean Squared 
Error = 0.02 %) and categorical variables (Proportion of Falsely Clas-
sified = 0.07 %). Imputed and observed data were comparable in terms 
of their summary distributions on participant characteristics (Table S1). 

2.6. Statistical analyses 

First, we reported baseline (wave 4) characteristics, expressed as 
means and proportions. Fibrinogen was normally distributed but loga-
rithmic transformation was performed on CRP, Cortisol, and IGF-1 
values because of their originally skewed distribution. 

Second, we conducted an LPA to determine patterns of immune and 
neuroendocrine activity at both waves. The optimal number of profiles 
was identified using a stepwise approach. Starting with a single-profile 
model, additional profiles were added to determine whether it 
improved the model fit. Once the number of latent profiles was deter-
mined, each individual in the sample was then assigned to a cluster for 
which they had the largest posterior probability (i.e., the profile they 
most likely belonged to). The LPA model for observed variable A can be 
expressed as: 

σ 2
A =

∑T

t=1
πt(μAt − μA) 2 +

∑T

t=1
πtσ2

At  

where μAt and σ2
At denote (t) class-specific means and variances for 

variable A, and πt show the proportion of N participants that belong to 
class t. The number of latent profiles was determined on the basis of the 
Akaike information criterion (AIC; Akaike et al., 1998) Bayesian infor-
mation criterion (BIC; Schwarz, 1978), and adjusted Bayesian 
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information criterion (aBIC; Bozdogan, 1987). The information criteria 
and the likelihood ratio tests indicated the goodness of fit of different 
latent profile models, with the best model being the one with the lowest 
AIC, BIC, and aBIC values. The entropy statistic that provides the quality 
of the classification model, and the average posterior probabilities for 
each latent profile that indicates profile membership classification er-
rors, were also taken into account (Celeux and Soromenho, 1996). The 
closer to 1 these indicators were, the better the classification quality 
(Morin et al., 2016). A common cut-off point for posterior probabilities 
is 0.70 or above (Nagin, 2009). An entropy of 0.80 or greater indicates 
clear profile separation (Kamata et al., 2018). Every profile must contain 
more than 5 % of participants and the profiles must be of good theo-
retical interpretability (Herle, 2020). 

Third, we used multinomial logistic regressions to investigate the 
association between psychosocial stress at wave 4 (2008) and the 
probability of immune and neuroendocrine profile membership at wave 
6 (2012). Results were presented as relative risk ratios (RRR), with 
standard errors (SE) and 95 % confidence intervals (95 % CI). Analyses 
were two-tailed. Models with different sets of covariates were fitted to 
understand their role in the association between stress and immune and 
neuroendocrine profiles. Model 1 was unadjusted. Model 2 adjusted for 
baseline immune and neuroendocrine profiles. Model 3 additionally 
adjusted for demographic and genetic variables because the predictive 
value of genetic information can vary by context, particularly age and 
sex (Jiang et al., 2021). Model 4 adjusted for all covariates. All data 
analyses were conducted in Stata 17.1 (StataCorp, TX, USA). 

2.7. Sensitivity analyses 

We conducted seven sensitivity analyses to examine the robustness of 
our findings. First, to ensure that associations were not dependent on the 
binary classification of stress, analyses were repeated using an ordinal 
score of stress (reported as unstandardized regression coefficients with 
SE). Second, to reveal any differences in stress exposure on profile 
membership, regressions were repeated using each of the six psycho-
social stressors independently. Third, individuals who were disabled or 
with longstanding limiting illness were more likely to be immunosup-
pressed given anti-inflammatory prescriptions, thus altering immune 
and neuroendocrine activity. Therefore, we reconstructed our stress 
index excluding these measures, then reran our analyses to quantify the 
extent to which they could have biased our results. Fourth, due to the 
potentially confounding effects of inflammaging and somatopause 
(Wagner et al., 2016), along with known differences in stress associa-
tions across age (Steptoe et al., 2015), the moderating effect of age was 
tested (dichotomised by mean age [≥65 years]). Fifth, because of known 
sex differences in biomarker activity (Klein and Flanagan, 2016), effect 
modification by sex was tested. Sixth, we wanted to determine genetic 
variance explained independent of age and sex. Finally, we compared 
results from our imputed analyses with a complete case analysis (CCA) 
to understand the potential impact of different approaches to deal with 
missing data on the results. The analytical sample formation for CCA is 
illustrated in Figure S5. 

3. Results 

The final analytic sample was 4,934 (Figure S4). Participant char-
acteristics of the analytic sample were materially unchanged from par-
ticipants in the core sample (Table S1) and are shown in Table 1. CRP 
was linearly correlated with fibrinogen (r = 0.706); cortisol (r = 0.273); 
and IGF-1 (r = -0.163), as fibrinogen was with cortisol (r = 0.176; all at 
p < 0.001; Table S2). Participants, male (~45 %) and female (~55 %), 
with a median age of 65 years old (interquartile range: 59–72; Mage =
66.31 ±9.35; range50-99) were followed over a four year period 
(2008–2012). Most were non-smokers (87.27 %) and consumed alcohol 
less than three days a week (64.27 %), and almost two thirds were 
sedentary (72.88 %). There was a fairly equal educational (Higher −

32.12 %; Primary/Secondary/Tertiary − 31.29 %; Alternative/None −
36.58 %) and occupational social class divide (Managerial/Professional 
− 36.28 %; Intermediate Occupations − 25.62 %; Routine/Manual −
38.10 %). There were 8,083 unique documented stress experiences 
(Figure S6; S7), with many participants experiencing more than one 
stress indicator. Of our sample, 12.48 % experienced a high level of 
stress, and this high stress group tended to be younger, female, smokers, 
who drank less than three alcoholic drinks a week (Table 1). As it 

Table 1 
Sample characteristics.  

Variable Baseline (N ¼ 4,934) 
N / M 
(SD) 

% / 
Range 

t χ2 

Age  66.31 
(9.35) 

50–99 <0.001  

Age (Binary) < M 2,437 49.39  <0.001  
≥ M 2,497 50.61   

Sex Male 2,235 45.30  <0.001  
Female 2,699 54.70   

Education Higher 1,585 32.12  0.961  
Primary/ 
Secondary/ 
Tertiary 

1,544 31.29    

Alternative/ 
None 

1,805 36.58   

Occupational 
Social Class 

Managerial/ 
Professional 

1,790 36.28  0.708  

Intermediate 
Occupations 

1,264 25.62    

Routine/ 
Manual 

1,880 38.10   

Smoking Status Non-smokers/ 
Ex-smokers 

4,306 87.27  <0.001  

Smokers 628 12.73   
Alcohol 

Consumption 
<3 days a week 3,171 64.27  0.004  

≥3 days a week 1,763 35.73   
Physical 

Activity 
Moderately/ 
Vigorously 
Active 

1,338 27.12  0.335  

Sedentary 3,596 72.88   
PGS for CRP Low 3,945 79.96  0.421  

High 989 20.04   
PGS for Cortisol Low 3,969 80.44  0.482  

High 965 19.56   
PGS for IGF-1 Low 3,929 79.63  0.180  

High 1,005 20.37   
Stress Score 

(Ordinal)  
1.51 
(0.90) 

0–6 –  

Stress Score 
(Binary) 

No 4,318 87.52  –  

Yes 616 12.48   
CRP* (mg/L; 

Baseline)  
1.19 
(0.68) 

0.18–3.04 0.915  

CRP* (mg/L; 
Follow-up)  

1.37 
(0.73) 

0.10–3.05 0.998  

Fibrinogen (g/ 
L; Baseline)  

3.38 
(0.56) 

1.30–5.90 0.728  

Fibrinogen (g/ 
L; Follow-up)  

3.12 
(0.54) 

1.50–5.80 0.984  

Cortisol* (pg/ 
mg; Follow- 
up)  

2.93 
(1.34) 

0.13–6.49 0.999  

IGF-1* (nmol/L; 
Baseline)  

2.78 
(0.34) 

1.10–4.19 0.393  

IGF-1* (nmol/L; 
Follow-up)  

2.78 
(0.27) 

1.61–4.06 0.309  

Notes: ELSA, waves 4–6 (2008/09–2012/13); N = observations; M = Mean; % =
percentage frequencies; SD = standard deviations; t = t-test significance between 
the exposed and unexposed for continuous variables; χ2 = Pearson Chi square 
test significance between the exposed and unexposed for categorical variables; <
= less than; ≥ = greater than or equal to; OSC = occupational social class; CRP 
= C-reactive protein; IGF-1 = Insulin-growth factor-1; * Log-transformed vari-
able; I-N = immune and neuroendocrine. 
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pertains to each independent stressor, 17.02 % of the sample experi-
enced financial strain, 7.01 % were informal carers, 45.80 % had diffi-
culty mobilising, 31.46 % had a limiting longstanding illness, 40.86 % 
were bereaved, and 9.18 % were divorcees (Figure S7). 

3.1. Latent profile analysis of immune and neuroendocrine biomarkers 

A three-profile model of immune and neuroendocrine biomarkers 
provided the most parsimonious fit to biomarker data at wave 6 
(Table S3; Figures S8 [a-g]), after which there were limited returns in 
AIC and BIC value (Figure S9); entropy was above 0.80 (Figure S10); the 
mean posterior probabilities did not exceed 0.70; each profile comprised 
more than 5 % of participants (Figure S11; Table S3); and each profile 
was theoretically meaningful. The most common profile was 2 (40 %), 
followed by profile 1 (36 %), then profile 3 (24 %; Figure S12). Profile 1 
(Mage = 64.16; ±7.77; 36 % of the sample) was defined as ‘low-risk’ as it 
was characterised by those having low CRP, low fibrinogen, low cortisol, 
and high IGF-1. Profile 2 (Mage = 66.59; ±9.38; 40 % of the sample) was 
the modal group, and consisted of individuals with moderate CRP, 
fibrinogen, cortisol, and IGF-1 levels, which was defined as ‘moderate- 
risk’. Finally, profile 3 (Mage = 69.03; ±10.62; 24 % of the sample) was 
marked by a high probability of high CRP, high fibrinogen, high cortisol, 
and low IGF-1, so this group was defined as ‘high-risk’ (Fig. 1). 

4. Stress and profile membership of immune and 
neuroendocrine biomarkers 

In the unadjusted model, greater stress was associated with the 
probability of being in the high-risk profile versus low-risk profile (Model 
[M] 1: RRR = 1.34, 95 % CI = 1.08–1.66, p = 0.008). This persisted after 
adjustment for baseline immune and neuroendocrine profiles (M2: RRR 

= 1.42, 95 % CI = 1.10–1.83, p = 0.007), further adjustment for de-
mographic and genetic variables (M3: RRR = 1.80, 95 % CI = 1.39–2.35, p 
< 0.001), and in our fully adjusted model, the risk of a high-immune and 
neuroendocrine profile was 1.6 times higher in the group exposed to 
high levels of stress compared with participants with lower stress 
exposure (M4: RRR = 1.61, 95 % CI = 1.23–2.12, p = 0.001). In the fully 
adjusted model, however, stress was not associated with the probability 
of being in the moderate-risk profile versus low-risk profile (Model M4: 
RRR = 1.10, 95 % CI = 0.89–1.35, p = 0.401; Table 2). To understand 
the role of specific confounding factors with greater nuance, results with 
incremental model adjustment can be found in the supplement 
(Table S4). There was evidence of negative confounding by demographic 
and genetic variables, which increased the RRR by 38 % (M3: RRR = 1.80, 
95 % CI = 1.39–2.35, p < 0.001), and by health variables, which 
increased the RRR by 20 % (M3c: RRR = 1.81, 95 % CI = 1.39–2.36, p <
0.001). 

4.1. Sensitivity analyses 

First, results were consistent when we used an ordinal classification 
of psychosocial stress. For each single increase in the stress score, in-
dividuals were 19 % more likely to be in the high-risk immune and 
neuroendocrine profile versus the low-risk profile in our fully adjusted 
model (M4: RRR = 1.19, 95 % CI = 1.23–2.12, p = 0.001; Table S5). 
Second, when individual stressors were tested against immune and 
neuroendocrine profile membership, we found that financial strain (M4: 
RRR = 1.59, 95 % CI = 1.25–2.01, p < 0.001), limiting longstanding 
illness (M4: RRR = 1.34, 95 % CI = 1.10–1.65, p = 0.005), and 
bereavement (M4: RRR = 1.26, 95 % CI = 1.04–1.52, p = 0.016) were 
each associated with belonging to the high-risk profile, as compared with 
the low-risk profile in fully adjusted models. Financial strain and 

Fig. 1. The mean levels of immune and neuroendocrine biomarkers for a three-profile solution.  
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bereavement showed gradients in risk, as each were associated with 
high- and moderate-risk profile membership. Caregiving and divorce 
were not associated with differences in profile membership, while 
disability was associated with a 30 % lower risk of belonging to the high- 
risk profile (Table S6[a-f]). Third, the stress index that excluded both 
disability and limiting long standing illness had higher relative risk co-
efficients than the primary composite score (M4: RRR = 1.71, 95 % CI =
1.32–2.22, p < 0.001), consistent with the previous observation with 
respect to disability (Table S7). Fourth, we found no evidence of dif-
ferences in the association between stress and biomarker profile mem-
bership between younger and older age groups (interaction p = 0.913), 
although relative risk coefficients were substantially larger for those 
aged 65 and older (Table S8[a-b]). Fifth, similar to age, there was no 
interaction (p = 0.239) nor difference in the risk profile between the 
sexes when results were stratified by sex (Table S9[a-b]). Sixth, genetic 
variables accounted for 1 % of the variance explained for being in the 
high-risk immune and neuroendocrine profile (M3: RRR = 1.80, 95 % CI 
= 1.39–2.35, p < 0.001; Table S10). Finally, we observed similar mean 
levels of immune and neuroendocrine biomarkers for a three-profile 
solution in a CCA (Figures S13-14) as compared with the main 
imputed data (Figure S8c). Re-analysis of the association between stress 
and profile membership in the CCA sample yielded similar results 
(Table S11). 

5. Discussion 

In a large nationally representative sample of UK older adults, we 
used multiple biomarkers in a latent profile analysis to provide a 
comprehensive characterisation of physiological activity across the 
integrative network of the immune, nervous, and endocrine systems. We 
found longitudinal evidence of an overall association between stress and 
the risk of high versus low immune and neuroendocrine profile mem-
bership four years later. Associations remained significant after ac-
counting for polygenic markers of immune and neuroendocrine activity, 
and a range of demographic, socioeconomic, lifestyle, and health fac-
tors. There was, however, no consistent gradient in risk as there was no 
significant difference in stress levels between low- and moderate-risk 
profiles, nor were there differences in the association between stress and 

immune-neuroendocrine profile activity by age or sex. Stress associated 
with financial strain was the strongest independent determinant of 
belonging to the high-risk immune and neuroendocrine profile, followed 
by limiting longstanding illness and bereavement. Furthermore, finan-
cial strain and bereavement showed gradients in risk. In contrast, 
disability was associated with a lower risk for moderate- and high-risk 
profile membership (vs low-risk), the reason for this is unclear, but there 
is plausible risk of reverse causality (Herle, 2020). Interestingly, our 
finding that the high-stress group tended to be those who drank less than 
three alcoholic drinks a week is not an unusual finding. Alcohol has a 
non-linear relationship with inflammation, where moderate consump-
tion is associated with lower levels of inflammatory markers than with 
low alcohol consumption, while high consumption is associated with 
higher inflammatory levels (Pai, 2006; Romeo, 2007; Bektas et al., 
2016). 

As noted elsewhere (Dhabhar and Mcewen, 1997), the biological 
responses to stress exposure are multiphasic, where we see the stimu-
lation or suppression of immune and neuroendocrine activity, or both 
simultaneously (Marshall, 1998), with the direction of effect depending 
on the biomarker being evaluated (Taub, 2008; Hamilton and Steptoe, 
2022). We addressed the complexity of immune and neuroendocrine 
interconnectivity by using latent profile analyses to identify distinct 
typologies of activity. Variability was revealed within the derived pro-
files and highlights why the evaluation of single biomarkers can obfus-
cate understanding of stress exposure. 

Though each biomarker has a unique role in maintaining health, 
functionally they are involved in proliferation, differentiation, migra-
tion, and apoptosis of targeted cells (Garbers, 2012). They are charac-
terised by interrelated pleiotropic, synergistic, and redundant actions 
that have afferent and efferent functional components (Kany et al., 
2019). When this dynamic process is dysregulated, it leads to varying 
concentrations of circulating biomarkers (Chikanza and Grossman, 
2000) that can contribute to diversity in disease sequelae (Kiecolt-Glaser 
et al., 2002; Hamilton et al., 2021; Chung, 2009). This can make pre-
diction more challenging and the interpretation of single biomarkers less 
intuitive, particularly because issues of multicollinearity mean that 
biomarkers are best modelled independently in regressions (Hamilton 
and Steptoe, 2022). Our latent variable modelling approach, similar to 
an earlier study of American adults (Yip, 2020), allowed for a 
synchronised assessment of a diverse set of biomarkers. However, these 
studies are not comparable because the selection of immune and 
neuroendocrine biomarkers differed. Even so, our derived profiles lend 
support to earlier experimental research that indicate symmetry be-
tween biomarkers of the immune, nervous, and endocrine systems 
(O’Connor, 2008; Taub, 2008; Ménard et al., 2017; Rivest, 2010), and 
our results confirm that biomarkers are, on average, temporally stable, 
despite individual trajectories varying widely (Hamilton and Steptoe, 
2022). 

The incremental rise in mean fibrinogen and cortisol levels from 
profile one to three, aligns with increases in mean CRP, which is 
consistent with earlier evidence on the synchronised physiological ex-
change between their respective systems to maintain homeostasis 
(Shimba et al., 2021). However, the unexpected moderate decline in 
IGF-1 between each of the derived profiles is notable. The reasons for 
this is unclear given the well documented covariance between each 
represented system in the LPA (O’Connor, 2008; Taub, 2008; Hamilton 
and Steptoe, 2022; Rajpathak, 2008). Specifically, that IGF-1 antago-
nises the effects of CRP (Liu, 2014), and IGF-1 alterations can impact 
both immunomodulation and immunosuppression (Shimba et al., 2021). 
As part of a coordinated systemic regulatory mechanism that facilitates a 
dynamic cellular microenvironment, proinflammatory cytokines can 
induce a state of resistance in hormonal secretion, including in IGF-1 
(Taub, 2008). This can attenuate the mitogenic effect of IGF-1, but can 
also have anti-proliferative effects on IGF-1 (O’Connor, 2008), which 
should be reflected here. The reason for the blunted effect of IGF-1 seen 
in the present study, is conceivably because IGF-1 secretion is sensitive 

Table 2 
Longitudinal associations of stress with immune and neuroendocrine biomarker 
profiles (N = 4,934).  

Adjustments Binary Stress Score 
RRR SE 95 % CI p 

Moderate-risk Profile 
Model 1: Unadjusted 0.98 0.10 0.81 1.20 0.870 

Model 2: Model 1 + baseline biomarkers a  1.01  0.11  0.83  1.24  0.898 
Model 3: Model 2 + demographics & 

genetics b  
1.14  0.12  0.93  1.41  0.213 

Model 4: Fully Adjusted c  1.10  0.12  0.89  1.35  0.401 
High-risk Profile 
Model 1: Unadjusted  1.34  0.15  1.08  1.66  0.008 
Model 2: Model 1 + baseline biomarkers a  1.42  0.18  1.10  1.83  0.007 
Model 3: Model 2 + demographics & 

genetics b  
1.80  0.24  1.39  2.35  <0.001 

Model 4: Fully Adjusted c  1.61  0.22  1.23  2.12  0.001 

Notes: The low-risk group is the reference; RRR = relative risk ratio; SE =
standard errors; CI = confidence interval; p = significance value. 
a Baseline biomarkers: C-reactive protein (CRP); fibrinogen; insulin-growth 
factor-1 (IGF-1). 
b Demographic and genetic variables: age; sex; 10 principal components (PCs); 
CRP polygenic score (PGS); cortisol PGS; IGF-1 PGS. 
c All variables: CRP; fibrinogen; IGF-1; age; sex; 10 PCs; CRP PGS; cortisol PGS; 
IGF-1 PGS; education; occupational social status; smoking status; alcohol con-
sumption; physical activity; health (i.e., chronic lung disease; coronary heart 
disease; abnormal heart rhythm; heart murmur; congestive heart failure; angina; 
hypertension; diabetes; cancer; Parkinson’s; Alzheimer’s; dementia; asthma; 
arthritis; osteoporosis; psychiatric disorder). 
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to nutritional and endocrine control, such that hormonal resistance is 
rendered maladaptive by pharmacologic use and dietary choices (Wit-
kowska-Sędek and Pyrżak, 2020); neither of which were measured here. 
In addition, O’Connor and colleagues (2008) suggest that cellular re-
sponses can vary tremendously depending on ligand origin and con-
centration, the number of cell receptors, and signalling kinetics post 
receptor activation, not to mention extracellular control of IGF-1, which 
is a second mode of regulation. 

It is also clear from converging lines of evidence that different 
stressors have different predictive power (Cohen et al., 2007; Kiecolt- 
Glaser et al., 2002; Steptoe et al., 2007; Segerstrom and Miller, 2004). 
There was some evidence to support this in the present study, with the 
largest effect sizes observed following financial stress, but given the 
overlap of CI, there is not strong associative differentiation. Even so, 
Hamilton and Steptoe’s (2022) recent observational study revealed id-
iosyncrasies in the role of different socioeconomic stressors in CRP, 
fibrinogen, IGF-1, and white blood cell count (WBCC/leukocytes). Part 
of the challenge is in establishing a ‘hierarchy of stress’ to determine 
which psychosocial stressors are most problematic; distinguishing be-
tween rare acute stressors that have high clinical risk and everyday 
stressors that create chronic risk and contribute more to overall disease 
burden in the population. The present study takes a step toward this 
purpose, and while we used an LPA to look at immune and neuroen-
docrine patterning here, future study would benefit from a more 
comprehensive stress score that is also submitted to LPA to see how 
stress clusters in the population. 

Our results extend previous evidence on psychoneuroimmunological 
processes (Kiecolt-Glaser et al., 2002; Steptoe et al., 2007; Segerstrom 
and Miller, 2004), by showing that stress exposure is associated with a 
greater probability of high-risk immune and neuroendocrine profile 
membership, irrespective of genetic propensity. This is an important 
feature of our study, and a methodological advance over previous 
research given that genetic factors can affect the magnitude of the im-
mune and neuroendocrine response (Prins, 2017). Inter-individual 
variability in biomarker concentrations and their respective binding 
proteins are partly the result of polymorphic variations in respective 
genes, while genes encoding biomarkers are candidate loci for diseases 
with an inflammatory basis (Prins, 2017). Moreover, CRP (Su, 2008), 
fibrinogen (Su, 2008), cortisol (Sawyers, 2021), and IGF-1 (Franco, 
2014) each have high heritability, which can be understood as the 
proportion of the total variation of the trait that can be attributed to 
unobserved genetic effects (Pankow, 2001). Therefore, while single 
nucleotide polymorphisms (SNPs) associated with each biomarker only 
explained a small proportion of the variance in our phenotypic associ-
ations, it is plausible that they confounded earlier evidence, such that 
their omission inflated effect sizes. 

Our study has several strengths. To our knowledge this is the first 
study to explore how stress is related to immune and neuroendocrine 
profile membership. The application of a latent profile approach and the 
prospective nature of the study facilitated an exploration into the tem-
poral direction of stress associations with population-level configura-
tions of immune and neuroendocrine biomarker activity with increased 
specificity. LPA was chosen over other traditional clustering methods 
because it identifies subgroups of individuals with similar biomarker 
activity (Wang and Wang, 2012) thereby providing more specificity to 
population risk assessment. This offers the promise of improving 
epidemiological and clinical assessments. We show that ‘one-size does 
not fit-all’ when assessing risk, so scientific research and clinical trials 
should consider distinct samples with higher risk burdens. Dichotomis-
ing the ordinal stress score reduced the influence of its non-normality, 
quasi-continuous quality, and limited the chance of underestimated 
correlations and an inflation of Type II errors (i.e., false negatives). 
Therefore, it offered more meaningful results, despite the potential loss 
of power. In the presence of nonlinearity and interactions missForest 
outperforms prominent imputation methods, such as multivariate 
imputation by chained equations and k-nearest neighbours in all metrics 

(Stekhoven and Bühlmann, 2012). Another key strength is in our use of a 
well-powered, well-characterised cohort that offers precise estimates of 
objective, systematically measured, interrelated biomarkers (Steptoe 
et al., 2013). ELSA offers a rich selection of repeated biological mea-
sures, and while other biomarkers may be of interest for future study, 
here we have a narrow focus on immune and neuroendocrine 
biomarkers. 

We do, however, note some important caveats. We cannot claim 
causality. Given the observational nature of the study, our results might 
be subject to residual confounding or over-adjustment. While the 
fibrinogen PGS was not available, a strong genetic correlation with CRP 
has been documented elsewhere (Su, 2008), and PGS for CRP was 
accounted for in analyses. Similarly, baseline cortisol was unavailable, 
although follow-up cortisol was correlated with CRP and fibrinogen 
(Table S2); both adjusted for at baseline. The self-reported nature of the 
stress score may have introduced some measurement error to the results, 
and there is an assumption in the stress measure that different exposures 
carry equal weight but this is typically not so. Given that ELSA partici-
pants are 99 % White, and ethnic groups are said to experience higher 
levels of stress (Thames et al., 2019), their absence in the present study is 
a considerable limitation. Crucially, immune and neuroendocrine acti-
vation involves a constellation of cells that interact and create a 
microenvironment that promotes disease, but here we include a rela-
tively small number of biomarkers to represent this complex network. 

6. Conclusion 

The synergistic immune and neuroendocrine response to stress rep-
resents an important target for clinical intervention. Intervening on 
these processes could alter the course of disease (Walker, 2014). We 
examined multivariate biomarkers, including CRP, fibrinogen, cortisol, 
and IGF-1, using empirically derived data reduction techniques to un-
cover subgroup differences in how immune and neuroendocrine bio-
markers pattern together. It proved an effective method to explore the 
complex series of reactions across the immune, nervous, and endocrine 
systems. Because stress was positively associated with the derived im-
mune and neuroendocrine profiles, our results support that exposure to 
high levels of stress can actuate a cascade of complex central and pe-
ripheral physiological events that has previously been linked to pa-
thology, sub-clinical illness, and debility. 
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